职称:校聘教授 研究方向:大数据、人工智能赋能的装备智能运维、信号处理及状态监测 联系电话: E-mail:yks2986534427@163.com |
|
个人简介
游科顺,男,中共党员,江西抚州人,工学博士,主要研究方向为装备数字孪生智能运维、动态信号监测与模式识别等。以第一作者在Reliability Engineering & System Safety、IEEE Internet of Things Journal等国际权威期刊发表SCI论文20多篇,其中7篇入选ESI全球Top 1%高被引论文,2篇入选ESI全球Top 0.1%热点论文。主持省部级项目1项,参与国家自然科学基金、江西省重点研发项目等多项课题,获国家发明专利及软件著作权十余项。长期担任十余个国际期刊审稿人,入选2025年度斯坦福大学全球前2%顶尖科学家年度影响力榜单。
主讲课程
机器学习,信号处理及人工智能类课程,欢迎对AI交叉学科感兴趣的同学报考
主要论文
代表作
[1] Y. Keshun, W. Puzhou and G. Yingkui, "Toward Efficient and Interpretative Rolling Bearing Fault Diagnosis via Quadratic Neural Network With Bi-LSTM," in IEEE Internet of Things Journal, 11(13): 23002-23019, (2024), doi: 10.1109/JIOT.2024.3377731. (ESI全球Top 1% 高被引文章,中科院一区top)
[2] Keshun Y, Guangqi Q, Yingkui G. Optimizing prior distribution parameters for probabilistic prediction of remaining useful life using deep learning[J]. Reliability Engineering & System Safety, 2024, 242: 109793. (中科院一区top)
[3] You Keshun, Wang Puzhou, Huang Peng, Gu Yingkui, A sound-vibrational physical-information fusion constraint-guided deep learning method for rolling bearing fault diagnosis [J].Reliability Engineering & System Safety, 253 (2025): 110556 (ESI全球Top 0.1% 热点文章和Top 1% 高被引文章,中科院一区top)
[4] Keshun Y, Chenlu L, Yanghui L, et al. DTMPI-DIVR: A digital twins for multi-margin physical information via dynamic interaction of virtual and real sound-vibration signals for bearing fault diagnosis without real fault samples[J]. Expert Systems with Applications, 2025, 292: 128592. (中科院一区top)
[5] Keshun, Y., Zengwei, L. & Yingkui, G. A performance-interpretable intelligent fusion of sound and vibration signals for bearing fault diagnosis via dynamic CAME [J]. Nonlinear Dynamics, 112, 20903–20940 (2024). https://doi.org/10.1007/s11071-024-10157-1. (ESI全球Top 1% 高被引文章,中科院二区top)
[6] Keshun Y, Chengyu W, Huizhong L. Research on intelligent implementation of the beneficiation process of shaking table[J]. Minerals Engineering, 2023, 199: 108108. (ES1 Top 1% 高被引文章,中科院二区top)
[7] Y. Keshun, Q. Guangqi and G. Yingkui, "A 3-D Attention-Enhanced Hybrid Neural Network for Turbofan Engine Remaining Life Prediction Using CNN and BiLSTM Models," in IEEE Sensors Journal, vol. 24, no. 14, pp. 21893-21905, 15 July 15, 2024, doi: 10.1109/JSEN.2023. 3296670. (ESI全球Top 1% 高被引文章,中科院二区Top)
[8] You Keshun, Lian Zengwei, Gu Yingkui, A Novel Rolling Bearing Fault Diagnosis Method Based on Time-Series Fusion Transformer with Interpretability Analysis [J]. Nondestructive Testing and Evaluation, 2024,1-27,doi: https://doi.org/10.1080/10589759.2024.2425813. (中科院二区)
[9] Keshun Y, Yingkui G, Yanghui L, et al. A novel physical constraint-guided quadratic neural networks for interpretable bearing fault diagnosis under zero-fault sample[J]. Nondestructive Testing and Evaluation, 2025: 1-31. (中科院二区), doi: https://doi.org/10.1080/10589759.2025.2534429.
[10] Keshun Y, Guangqi Q, Yingkui G. Remaining useful life prediction of lithium-ion batteries using EM-PF-SSA-SVR with gamma stochastic process[J]. Measurement Science and Technology, 2023, 35(1): 015015. (ESI全球Top 0.1% 热点文章和Top 1% 高被引文章,中科院三区)
[11] Keshun Y, Huizhong L. Feature detection of mineral zoning in spiral slope flow under complex conditions based on improved yolov5 algorithm[J]. Physica Scripta, 2023, 99(1): 016001. (ESI全球Top 1% 高被引文章,中科院三区)
[12] You K, Qiu G, Gu Y. An efficient lightweight neural network using BiLSTM-SCN-CBAM with PCA-ICEEMDAN for diagnosing rolling bearing faults[J]. Measurement Science and Technology, 2023, 34(9): 094001.(中科院三区)
主要的专利、软件著作
[1] 游科顺, 古莹奎, 邱光琦.一种基于随机退化过程的锂离子电池RUL预测方法[P].江西省:CN117630682A, 2024-03-01(国家发明专利)
[5] 游科顺,连增卫,古莹奎, 汽车锂电池 RUL 在线评估系统V1.0, 2023SR0865002
[6] 游科顺,连增卫,古莹奎, 涡扇发动机可靠性在线评估系统 V1.0,2023SR0865237
[7] 游科顺,连增卫,古莹奎, 一种端到端滚动轴承故障智能诊断系统V1.0, 2023SR0865003
[8] 游科顺,刘惠中, 选矿摇床分选过程实时监测及智能化系统V1.0, 2021SR1218595
[9] 游科顺,古莹奎,基于振动信号融合的可解释智能故障诊断系统V1.0,2024SR0794502
[10] 游科顺,古莹奎,林阳辉,王浦舟,一种旋转机械轴承故障信号仿真与分析系统V1.0,2024SR1120827
[11] 游科顺,古莹奎,多元信号实时监测的旋转机械故障预警系统V1.0,2025SR0239541
[12] 游科顺,古莹奎,林阳辉,王浦舟,一种冶金旋转机械设备数字化监测和管理平台V1.0,2025SR0254066
[13] 游科顺,古莹奎,一种基于虚拟与现实动态交互的数字孪生轴承故障诊断方法,实质性审查(国家发明专利)